

DTX-MFM2/GFM2/SFM2

Fiber Modules

用户手册

销售热线:0755-82816978

PN 2142235 April 2004, Rev. 4 4/10 (Simplified Chinese) ©2004, 2006, 2007, 2010 Fluke Corporation. All rights reserved. Printed in USA. All product names are trademarks of their respective companies.

目录

页码

标题

特性概述	1
注册	1
与 Fluke Networks 联系	2
访问技术参考手册	2
缆线测试信息的额外资源	2
开封	3
DTX-MFM2 多模光纤模块	3
DTX-GFM2 多模光纤模块	3
DTX-SFM2 单模光纤模块	3
安全说明	4
入门和认识	6
安装与拆卸光纤模块	6
物理特性	7
安装连接适配器	8
可靠的光纤测试结果概要	10
清洁连接器及适配器	10
关于设置基准	11

选择测试基准线	12
对测试基准线进行测试	12
用心轴测试多模光纤	12
光纤测试设置值	15
关于1个跳接的连接	20
认证光纤布线	20
以智能远端模式进行自动测试	20
以环回模式进行自动测试	28
以远端信号源模式进行自动测试	36
使用视频故障定位器	44
监控光学功率	47
选件及零配件	50
维护保养	50
更换光纤测试基准线	50
将远端测试仪用于 OptiFiber 认证 OTDR	50
认证、符合标准及规范信息	51
如何测试测试基准线	A-53
测试方法参考对照表	B-61
修改的 1 个跳接法	C-63

索引

ii

图目录

图

标题

1.	安装与拆卸光纤模块	6
2.	光纤模块特性	7
3.	SC、ST、LC 和 FC 连接适配器	8
4.	安装连接适配器	9
5.	在心轴上盘绕测试基准线	14
6.	如何确定适配器数量设置的实例(以单模为例,未使用心轴)	17
7.	远端信号源模式所需的装置(1个跳接法)	21
8.	以智能远端模式设置基准(1个跳接法)	23
9.	以智能远端模式测试测试基准线	25
10.	以智能远端模式测试光纤链路(1个跳接法)	27
11.	以环回模式进行测试所需的装置(1个跳接法)	29
12.	以环回模式设置基准(1个跳接法)	31
13.	以环回模式测试测试基准线	33
14.	以环回模式测试光纤(1个跳接法)	35
15.	以远端信号源模式进行测试所需的装置(1个跳接法)	36
16.	以远端信号源模式设置基准(1个跳接法)	39
17.	以远端信号源模式测试测试基准线	41

18.	以远端信号源模式测试链路(1个跳接法)	43
19.	使用视频故障定位器所需的装置	44
20.	使用视频故障定位器	46
21.	监控光学功率所需的装置	47
22.	监控光学功率连接	49
A-1.	用于测试测试基准线的装置	A-54
A-2.	光纤端面的范例	A-56
A-3.	基准连接	A-57
A-4.	用于测试测试基准线的连接	A-59
C-1.	修改的1个跳接法:智能远端模式基准连接	C-64
C-2.	修改的1个跳接法:智能远端模式测试连接	C-65

DTX-MFM2/GFM2/SFM2 光纤模块

特性概述

DTX-MFM2、 DTX-GFM2 和 DTX-SFM2 光纤模块可与 DTX 系列 CableAnalyzer 电缆分析仪配套使用,用于测试和认证 光纤布线安装。光纤模块包含下列功能及特性:

- 在双光纤布线上测量光功率损耗及长度。DTX-MFM2可在850nm和1300nm波长下测试多模布线。DTX-SFM2则可在1310nm和1550nm波长下测试单模布线。当需要一个VCSEL光源时,DTX-GFM2可以让VCSEL光源在850nm和1310nm波长条件下测试多模布线
- 每个模块可传输两种波长(850 nm 和 1300 nm, 850 nm 和 1310 nm,或 1310 nm 和 1550 nm)。
- 可互换的连接适配器可为大多数 SFF (小型)光纤连接 器提供符合 ISO 和 TIA 标准的基准连接和测试连接。
- 提供根据工业标准极限值的通过 / 失败测试结果。

- 视频故障定位器帮助您找到断裂、不良的拼接点、及弯曲,并可检查光纤的连通性和极性。
- FindFiber™ 功能帮助您确立与确认光纤连接。

注意

光纤模块与DTX-ELT 不兼容。

注册

向 Fluke Networks 注册产品后,用户可获得有关产品更新、 故障诊断技巧和其它支持服务等宝贵信息。如要注册,上 Fluke Networks 网站填写在线注册表,网址是: www.flukenetworks.com/fnet/zh-cn/MyAccount。

开封

光纤模块包装箱内有下列零配件。若内容物有损坏或遗失, 请立即与购买处联系。

DTX-MFM2 多模光纤模块

- 两个 DTX-MFM2 光纤模块,用于在 850 nm 和 1300 nm 波长下进行测试
- 两根 62.5/125 µm 多模测试基准线, 2 m 长, SC/SC 接头
- 两个灰色心轴,用于带 3 mm 包覆层的 62.5 /125 μm 光 纤
- 两个红色心轴,用于带 3 mm 包覆层的 50 /125 µm 光纤
- DTX-MFM2/GFM2/SFM2 光纤模块用户手册

DTX-GFM2 多模光纤模块

- 两个DTX-GFM2光纤模块,用于在850 nm和1310 nm波 长下进行测试
- 两根 50/125 µm 多模测试基准线, 2 m 长, SC/SC 接头
- DTX-MFM2/GFM2/SFM2 光纤模块用户手册

DTX-SFM2 单模光纤模块

- 两个 DTX-SFM2 光纤模块,用于在 1310 nm 和 1550 nm 波长下进行测试。
- 两根 9/125 μm 单模测试基准线, 2 m 长, SC/SC 接头
- DTX-MFM2/GFM2/SFM2 光纤模块用户手册

注释

随附的测试基准线和连接适配器类型适合用于测试 SC 端接的链路。其它连接器类型或 50 /125 µm 光纤 则需要使用其它测试基准线和适配器类型。许多跳 接线零配件均可从 Fluke Networks 购得。

安全说明

▲ 警告 ▲

为了避免可能引起火灾、电击或人员伤害,请参阅 DTX 系列CableAnalyzer 用户手册中所述的安全 信息。

▲ 警告:第1类和第2类激光产品 ▲ 为了避免危险辐射可能对眼睛造成伤害:

- 切勿直视光学连接器内部。有些光源会产生肉眼不可见的辐射,可能对您的双眼造成永久的损伤。
- 始终用防尘罩覆盖住光纤模块的 OUTPUT (输出) 端口或将测试基准线与端口连接。即使没有在进行 测试时,"输出"端口亦可保持现用的状态。覆盖住 端口可以降低意外曝露于危险辐射的风险。

- 在将光纤与您要使用的端口连接之前,切勿开始测 试或启动 OUTPUT (输出)端口或 VFL 端口。
- 不要直视视频故障定位器输出端口。短暂地曝露在 定位器的输出端口不会伤害到眼睛;但是,长时间 的直接曝露则有潜在的危险。
- 若无适当的过滤装备,切勿使用放大镜来查看光学 输出端口。
- 使用此处没有提及的控制、调整、或程序可能导致 有害的辐射曝露。

\Lambda 小心

为了避免损坏被测的测试仪或缆线,为了避免数据 丢失,并确保取得准确度最大的测试结果:

- 如果并未安装光纤模块,请将模块托架盖保留在原位。
- 在连接或拆除模块前,先将测试仪关闭。

- 使用光纤模块时,在每次使用前,用适当的清洁程 序来清洁所有光纤连接器。忽略此步骤或使用不正 确的程序可能导致不可靠的测试结果,并且可能永 久损坏连接器。请参见第 10 页。
- 仅使用符合 ISO/IEC 14763-3 要求的高品质的测试基 准线。定期对连接线进行测试。参见附录 A。
- 不使用时,请用防尘罩盖住所有连接器。

- 将光纤模块的连接适配器存放在随附的容器中。
- 请勿接触光电二极管镜头 (见图 4)。
- 请勿将适配器拧得过紧或使用工具来拧紧适配器。
- 使用Fluke Networks FiberInspector视频显微镜定期 检视光纤模块的输出 (OUTPUT) 连接器是否有刮 痕及其它损伤。

DTX-MFM2/GFM2/SFM2 光纤模块 用户手册

入门和认识

下面的部分说明光纤模块的特性。

安装与拆卸光纤模块

图 1 显示如何安装与拆卸光纤模块。

▲ 小心 如果并未安装光纤模块,请将模块托架盖保留在原 位。

图 1. 安装与拆卸光纤模块

物理特性

图 2. 光纤模块特性

DTX-MFM2/GFM2/SFM2 光纤模块 用户手册

图 3. SC、 ST、 LC 和 FC 连接适配器

安装连接适配器

连接 SC, ST, LC 和 FC 光纤连接器时,您可以更换光纤模块 的输入端口连接适配器。或许可以选用其它适配器型式。请 查看 Fluke Networks 网站获取更新。 ▲ 小心

- 不使用时,请用防尘罩盖住所有连接器。
- 将光纤模块的连接适配器存放在随附的容器中。
- 请勿接触光电二极管镜头 (见图 4)。
- 请勿将适配器拧得过紧或使用工具来拧紧适配器。

要安装连接适配器,请参照图4并执行下列操作:

- 1 找到光纤模块连接器上的槽口及适配器环上的键。
- 2 握住适配器,使其不在螺母中转动,然后将适配器的键 对准模块连接器的槽口,再将适配器滑入连接器。
- 3 将螺母拧到模块连接器上。

图 4. 安装连接适配器

可靠的光纤测试结果概要

为了取得可靠的光纤测试结果,您需遵循适当的清洁及基准 设置程序,且在有些情况下,在测试期间还需使用心轴。

清洁连接器及适配器

连接前须先清洁并检视光纤连接器。使用光纤光学溶剂以及 光学拭布或棉签,按照以下方法来清洁连接器:

隔板连接器和光纤模块的输出连接器

注释

使用2.5 毫米泡沫棉签清洁测试仪的光学连接器。

- 将光纤光学溶剂笔或者浸泡过溶剂的棉签的顶端接触到 无棉拭布或者是光纤清洁卡上。
- 2 用一根新的干棉签蘸取拭布或清洁卡上有溶剂的地方。

- **3** 把棉签推入连接器内,沿端面绕3到5圈,然后取出棉签 并丢弃。
- 4 用干燥的棉签在连接器内绕3到5圈来擦干连接器。
- 5 在进行连接前,使用光纤显微镜监视连接器,如 Fluke Networks FiberInspector[™] 视频显微镜。

光纤模块的输入连接器

- 1 取下连接适配器,露出光电二极管镜头(见图 4)。
- **2** 使用上面步骤1和2中所描述的方法将一根棉签用溶剂浸湿。
- 3 用潮湿的棉签绕镜头擦拭3到5圈,然后用一根干棉签绕 镜头擦拭3到5圈。

清洁光纤适配器

定期使用棉签及光纤光学溶剂清洁光纤适配器。在使用前请 用一根干棉签将适配器擦干。

连接器端头

- 将光纤光学溶剂笔或者浸泡过溶剂的棉签的顶端接触到 无棉拭布或者是光纤清洁卡上。
- 2 将连接器的端面在有溶剂的地方来回擦拭,然后在拭布 或者清洁卡干燥的地方再来回擦拭一遍。

注释

有些样式的连接器,例如VF-45,可能需要不同的清 洁方法。

3 在进行连接前,使用光纤显微镜监视连接器,如 Fluke Networks FiberInspector 视频显微镜。

请将防护罩一直盖在未使用的连接器上。定期使用棉签或拭 布及光纤光学溶剂清洁防护罩。

关于设置基准

基准可作为损耗测量的基准电平。定期设置基准有助于察觉 到电源及连接的完整性所产生的微小变化。同时,由于基准 是测量的基本指标,设置基准期间所用的测试基准线和适配 器的损耗不包含在测试结果中。

注释

开启测试仪及智能远端,等候5分钟,然后才开始 设置基准。如果模块使用前的保存温度高于或低于 环境温度,则等待更长时间使模块温度稳定。

您需要在下面的情况下设置基准:

- 在每天开始前,使用当天要用的远端设置(图 10 至 18 来 设置基准。
- 任何时候您重新将测试基准线连接到模块的输出端口或 其它信号源。
- 任何时候测试仪警告您基准值已过期。
- 任何时候您看到负损耗测量。(有关更多信息,请参见 技术参考手册。)

您需要在下面的情况下设置基准:

- 任何时候您更换测试仪或智能远端的光纤模块。
- 任何时候您用不同的远端测试仪开始测试。
- 任何时候您更改"设置"中的测试方法。

▲ 小心

在设置基准后,不要将测试基准线与测试仪的输出 端口断开。因为这样做会改变发射到光纤中的光功 率,从而导致基准无效。

基准值每天的变动不应超过十分之几分贝。变动过大可能代 表测试基准线或连接有问题。

请参见"智能远端"、"环回"、及"远端信号源模式"部分 有关设置每种模式的基准的详细说明。

选择测试基准线

DTX 光纤模块配备了高品质的测试基准线。

为了确保测量值准确和可靠,请使用由 Fluke Networks 提供 的测试基准线或相同品质的连接线。请参见第 50 页上的 " 更 换光纤测试基准线 "。

对测试基准线进行测试

您必须定期对测试基准线进行测试。开始时,用附录 A 中给 定的步骤来测试连接线。此后,使用与布线认证步骤一起给 定的步骤来监测连接线的情况。

用心轴测试多模光纤

用 DTX-MFM2 光纤模块测试多模光纤时应使用心轴。心轴可 以改善测量结果的可重复性及一致性。心轴还允许使用 LED 指示灯信号源来认证 50 微米及 62.5 微米光纤链路以用于当 前与日后的高比特率应用,如千兆以太网 (Gigabit Ethernet)和万兆 (十千兆)以太网 (10 Gigabit Ethernet)。

▲ 小心

使用 DTX-GFM2 光纤模块进行测试时请勿使用心 轴。 DTX-MFM2 随附的灰色心轴符合 ANSI/TIA-568-C 规格,可 用于带 3 mm 包覆层的 62.5 μm 光纤。您可从 Fluke Networks 购得用于 50 微米光纤的心轴。如果您使用其它的 标准,请查阅特定心轴要求的适当标准。表 1 显示 TIA 标准 针对心轴要求的部分列表。 图 5 显示应如何将光纤盘绕心轴。将心轴置于测试仪的输出 光纤,如图 8 至 15 所示。

测试仪所示的基准及测试连接图表中以光纤内的环路代表心 轴。

光纤 核心尺寸	标准	盘绕心轴	用于 250 微米缓冲光纤的 心轴直径	用于 3 毫米 (0.12 英寸) 护套缆线的心轴直径
50 微米	ANSI/TIA-568-C.0 6.4.2.1	5	25 微米 (1.0 英寸)	22 微米 (0.9 英寸)
62.5 微米	ANSI/TIA-568-C.0 6.4.2.1	5	20 微米 (0.8 英寸)	17 微米 (0.7 英寸)

表 1. ANSI/TIA-568-C 心轴要求

图 5. 在心轴上盘绕测试基准线

光纤测试设置值

若要访问光纤测试设置值,将旋转开关转至 SETUP;然后选 择**光纤损耗**。用 ④ 键来查看不同的选项卡。

表 2 说明用于光纤布线测试的设置值。

设置值	说明
SETUP > 光纤损耗 > 光纤类型	选择一种适用于被测光纤的光纤类型。选择 Custom (自定义)可创建光纤类型。请参阅 " 技术参考 手册 " 获取详细信息。
SETUP > 光纤损耗 > 测试极限	为测试任务选择适当的测试极限。测试仪将光纤测试结果与所选的测试极限相比较,以产生 通过 或 失败 的测试结果。选择 Custom 可创建测试极限值。请参阅 " 技术参考手册 " 获取详细信息。
SETUP > 光纤损耗	用 智能远端 模式来测试双重光纤布线。
>远端端凨设直	用环回模式来测试测试基准线与缆线绕线盘。
	用 远端信号源 模式及光学信号源来测试单独的光纤。

表 2. 光纤测试设置值

- 续 -

设置值	说明
SETUP > 光纤损耗 > 双向	在 " 智能远端 " 或 " 环回 " 模式中启用 " 双向 " 时,测试仪提示要在测试半途切换测试连接。在每组 波长条件下,测试仪可对每根光纤进行双向测量 (850 nm/1300 nm, 850 nm/1310 nm 或 1310 nm/ 1550 nm)。
SETUP > 光纤损耗	如果所选的极限值使用计算的损耗极限值,输入在设置参考后将被添加至光纤路径的适配器数目。图
> 适配器数目	6 显示如何决定 适配器数目 设置值的实例。
SETUP > 光纤损耗	仅有每公里损耗、每连接器损耗、及每拼接点损耗最大值的极限值,使用计算极限值作为总损耗。例
> 拼接点数目	如,光纤主干的极限值会使用计算损耗极限。
SETUP > 光纤损耗	选择用于布线的连接器类型。此设置值仅会影响所示的作为基准连接的图表。若未列出布线连接器类
> 连接器类型	型,请选用 通用 类型。

表 2. 光纤测试设置值 (续)

- 续 -

图 6. 如何确定适配器数量设置的实例 (以单模为例,未使用心轴)

设置值	说明	
SETUP > 光纤损耗 > 测试方法	损耗结果包含设置基准后添加的连接。基准及测试连接可决定将哪个连接包含于结果当中。测试方法 指所含端点连接数:	
	2 个跳接 :损耗结果包含链路一端的一个连接。	
	1 个跳接 :损耗结果包含链路两端的连接。选择此方法用于本手册所示的连接。请参见第 20 页中的 " 关于 1 个跳接的连接 "。	
	3 个跳接 :损耗结果不包含链路各端的连接。仅测量光纤损耗。	
	三种测试方法的不同标准名称各有不同。详细情况请参见 " 附录 B"。技术参考手册提供有关测试方法 的额外信息。	
	此设置值不会影响损耗的测试结果。它将与测试结果一同保存来记录您所用的方法。	
	此设置值不会影响测试仪显示屏中显示的基准和测试连接示意图。示意图显示所选方法的连接。	

表 2. 光纤测试设置值 (续)

设置值	说明		
SETUP > 光纤损耗 > 折射率来源 (n) > 用户 定义或默认值	测试仪使用目前选定的光纤类型 (默认值)所定义的折射率 (n) 或您所定义的值 (用户定义)。 选定的光纤类型所定义的默认值代表该特定光纤类型的典型值。如果需要,可以输入另一个值。 若要决定实际的值,更改折射率,直到测得的长度符合光纤的已知长度。		
	增加折射率将会缩短测得的长度。		
SPECIAL FUNCTIONS > 设置基准	设置基准可以设置损耗测量的基准电平。请参见第 11 页的 " 关于设置基准 "。		
跳接线长度 (查看连接 屏幕上的软键)	在您设置基准后,可输入所用的测试基准线的长度。长度包含于已保存的自动测试结果内以便满 足光纤测试结果的 TIA 报告要求。		
用于保存测试结果的设 置值	有关准备保存测试结果的详细说明,请参见 DTX <i>系列</i> CableAnalyzer <i>用户手册或技术参考手册</i> 。		

表 2. 光纤测试设置值 (续)

关于1个跳接的连接

本手册中所示的基准及测试连接可产生"1个跳接"测试结 果。"1个跳接"结果包含光纤的损耗及链路两端连接的损 耗。为了确保测试结果准确,切勿在设置基准后断开光纤模 块输出端口的连接。使用与被测光纤连接器匹配的连接适配 器,就可在不断开输出端口连接的情况下连接光纤。

\Lambda 小心

如果在设置基准后将测试基准线与测试仪或智能远 端的输出端口断开,则必须重新设置基准以确保测 量值有效。

如果没有合适的连接适配器,请参见附录 C" 修改的 1 个跳 接法"了解能产生"1 个跳接"结果的其它连接方式。 如要测试两端连接器类型不同的链路,请参见 DTX 系列电缆 分析仪技术参考手册附录中所述的替代方法或访问 Fluke Networks" 知识库"获取建议。

认证光纤布线

自动测试可运行必要的测试来认证光纤布线符合特定的标准。取决于所进行的是双工布线、光纤绕线盘、测试基准线 或单一光纤布线测试,自动测试可以"智能远端"、"环回" 或"远端信号源"模式来运行。

以智能远端模式进行自动测试

用"智能远端"模式来测试与验证双重光纤布线。在此模式 中,测试仪以单向或双向测量两根光纤上两个波长的损耗、 长度、及传播延迟。

图 7 显示以"智能远端"模式测试光纤所需的装置。

图 7. 远端信号源模式所需的装置(1 个跳接法)

以智能远端模式进行自动测试:设置基准

- 开启测试仪及智能远端,等候5分钟。如果模块使用前的 保存温度高于或低于环境温度,则等待更长时间使模块温 度稳定。
- 2 将旋转开关转至设置,然后选择光纤损耗。设置光纤损 耗选项卡下面的选项(按)键来查看其它选项卡):
 - 光纤类型:选择待测的光纤类型。
 - 测试极限:选择执行任务所需的测试极限值。 按 (F) 更多键来查看其它极限值列表。
 - 远端端点设置:设置为智能远端。
 - 双向:如果您需要双向测试光纤, 启用此选项。
 - **适配器数目**及**熔接点数**:输入将在设置参考后被添加 至光纤路径的每个方向的适配器及**熔接**数。

- **连接器类型:**选择用于待测布线的连接器类型。若未 列出实际的连接器类型,请选择**常规**。
- 测试方法:指包含在损耗测试结果中的适配器数目。如果使用本手册所示的基准及测试连接,请选择1个跳接。
- 3 将旋转开关转至 SPECIAL FUNCTIONS;然后选择设置基准。如果同时连接了光纤模块和双绞线适配器或同轴电缆适配器,接下来选择光纤模块。
- 4 设置基准屏幕画面会显示用于所选的测试方法的基准连接。图8显示用于"1个跳接法"的连接。清洁并检查测试仪及测试基准线上的连接器,连接测试仪及智能远端, 然后按 (15) 键。

有关设置的详细说明,请参见第15页上的表2。

- 续 -

图 8. 以智能远端模式设置基准 (1个跳接法)

以	以智能远端模式进行自动测试:确保测试基准线良好		
	▲ 小心		
	如果将测试基准线与测试仪或智能远端的输出端断 开连接,那么必须重新设置基准以确保测量值有效。		
5	从测试仪和智能远端上的 INPUT 端口断开测试基准线。		
6	如图9所示进行连接。		
7	将旋转开关转至AUTOTEST,然后按 📧 键。		
8	按	9	
	▲ 小心		
	总的结果为 PASS 并不表示测试基准线情况良好。 您必须将损耗与此处给出的极限值进行比对,以确 保连接线良好。	10	

多模测试基准线:

850 nm:小于或等于 0.11 dB 1300 nm:小于或等于 0.10 dB

(由于光纤在 850 nm 比在 1300 nm 时损耗更多,所以极 限值不同。)

单模测试基准线:

对于 1310 nm 和 1550 nm 为小于或等于 0.20 dB

- 如果结果大于上述的极限值,请使用附录 A 中给定的步骤 来测试失败路径中的连接线 (**输入光纤**或**输出光纤**)。当 您拥有良好的测试基准线时,请在测试光纤链路之前设置 基准并再次进行这些步骤 (第5步到第9步)。
- **10** 保存测试结果以便显示您使用了良好的测试基准线来测试 链路。

注意

Fluke Networks 建议您在测试各个光纤链路之前使用 此步骤来确保您的测试基准线性能良好。

图 9. 以智能远端模式测试测试基准线

以智能远端模式进行自动测试:测试光纤链路			
	▲ 小心 如果将测试基准线与测试仪或智能远端的输出端口断 开,则必须重新设置基准以确保测量值有效。	 确认另一端的测试仪已开启。(测试仪无法通过光纤模 块激活远端的休眠中或电源已关闭的测试仪。) 在配线板上尝试各种不同的连接。 	
11	清洁并检查待测布线上的连接器;然后连接到链路。测试 仪显示用于所选测试方法的测试连接。图 10 显示用于 "1 个跳接法"的连接。	 尽量在一端改变连接的极性。 请用视频错误定位器来确定光纤连通性问题。 15 如果启用了双向测试,测试仪提示要在测试半途切换光 	
12	将旋转开关转至 AUTOTEST。确认介质类型设置为 光纤损 耗。如果需要,按 创	纤。切换布线两端点的配线板或适配器 (而不是测试仪 端口)的光纤。	
13	按测试仪或智能远端的 📧 键。	16 要保存测试结果,按 🚾 键,选择或建立输入光线的光纤 标识码;然后按 🚾 键。选择或建立输出光线的光纤标 识码:然后按 — 下 ன 键	
14	如果显示为 开路 或 未知 ,请尝试下面的步骤: • 确认所有连接是否良好。	在"智能远端"模式的测试结果中, 输入光纤 及 输出光纤 指 连接至主测试仪的输入及输出端口的光纤、对于双向测试	

则指测试结束时连接至主测试仪的输入及输出端口的光纤。

图 10. 以智能远端模式测试光纤链路 (1个跳接法)

以环回模式进行自动测试

用"环回"模式来测试缆线绕线盘及未安装的缆线段。

在此模式中,测试仪以单向或双向测量两个波长的损耗、长 度、及传播延迟。

图 11 显示以 "环回"模式测试光纤所需的装置。

图 11. 以环回模式进行测试所需的装置(1 个跳接法)

以环回模式进行自动测试:设置基准

- 开启测试仪及智能远端,等候5分钟。如果模块使用前的 保存温度高于或低于环境温度,则等待更长时间使模块温 度稳定。
- 2 将旋转开关转至设置,然后选择光纤损耗。设置光纤损耗 选项卡下面的选项(按)键来查看其它选项卡):
 - 光纤类型:选择待测的光纤类型。
 - 测试极限:选择执行任务所需的测试极限值。按 FT 更多键来查看其它极限值列表。
 - 远端端点设置:设置为环回模式。
 - 双向:如果您需要双向测试光纤, 启用此选项。
 - 适配器数目及熔接点数:输入将在设置参考后被添加 至光纤路径的每个方向的适配器及熔接数。

- **连接器类型:**选择用于待测布线的连接器类型。若未 列出实际的连接器类型,请选择**常规**。
- 测试方法:指包含在损耗测试结果中的适配器数目。
 如果使用本手册所示的基准及测试连接,请选择
 一个跳接。
- 3 将旋转开关转至 SPECIAL FUNCTIONS ;然后选择设置基准。如果同时连接了光纤模块和双绞线适配器或同轴电缆适配器,接下来选择光纤模块。
- 4 设置基准屏幕画面会显示用于所选的测试方法的连接。 图 12 显示用于 "1 个跳接法"的连接。清洁并检查测试 仪及测试基准线上的连接器,连接测试仪的输入及输出 端口;然后按 () 键。

有关设置的详细说明,请参见第 15 页上的表 2。

- 续 -

图 12. 以环回模式设置基准 (1个跳接法)

多模测试基准线:

850 nm: 小于或等于 0.11 dB 1300 nm: 小于或等于 0.10 dB

(由于光纤在 850 nm 比在 1300 nm 时损耗更多,所以极 限值不同。)

单模测试基准线:

对于 1310 nm 和 1550 nm 为小于或等于 0.20 dB

- 9 如果结果大于上述的极限值,请使用附录 A 中给定的步骤 来测试连接线。当您拥有良好的测试基准线时,请在测试 光纤链路之前设置基准并再次进行这些步骤 (第5步到 第9步)。
- **10** 保存测试结果以便显示您使用了良好的测试基准线来测试 链路。

注意

Fluke Networks 建议您在测试各个光纤链路之前使用 此步骤来确保您的测试基准线性能良好。

图 13. 以环回模式测试测试基准线

以环回模式进行自动测试:测试光纤				
	▲ 小心		按 ल्हा 键。	
	如果将测试基准线与测试仪的输出端口断开,则必 须重新设置基准以确保测量值有效。	14	如果启用了双向测试,测试仪会提示要在测试半途切换光 纤。切换适配器 (而不是测试仪端口)的光纤。	
11	清洁并检查待测布线上的连接器;然后连接至布线。测 试仪会显示用于所选测试方法的连接。图 12 显示用于 "1 个跳接法 " 的连接。	15	要保存测试结果,按 ∞ 键,选择或建立光纤标识码;然 后再按一下 ∞ 键。	
12	将旋转开关转至 AUTOTEST。确认介质类型设置为 光纤损 耗。如果需要,按 印 键 更换介质 来更改。			

图 14. 以环回模式测试光纤 (1个跳接法)

以远端信号源模式进行自动测试

"远端信号源"模式需用独立的光学信号源。图 15 显示以"远端信号源"模式进行光纤测试所需的装置。

用 " 远端信号源 " 模式来测量单个光纤上某一波长的功率损 耗。

图 15. 以远端信号源模式进行测试所需的装置(1个跳接法)

以远端信号源模式进行自动测试:设置基准

- 1 开启测试仪及智能远端,等候5分钟。如果模块使用前的保存温度高于或低于环境温度,则等待更长时间使模块温度稳定。对于其它信号源,根据制造商的建议决定预热时间。
- 2 将旋转开关转至设置,然后选择光纤损耗。设置光纤损 耗选项卡下面的选项(按)键来查看其它选项卡):
 - 光纤类型:选择待测的光纤类型。
 - 测试极限:选择执行任务所需的测试极限值。按 FT
 更多键来查看其它极限值列表。
 - 远端端点设置:设置为远端信号源模式。

- 双向:不适用于"远端信号源"模式。
- Number of Adapters (适配器数量)和 Number of Splices (绞接数量):对远端光源模式不适用。
- **连接器类型:**选择用于待测布线的连接器类型。若未列 出实际的连接器类型,请选择**常规**。
- 测试方法:指包含在损耗测试结果中的适配器数目。如果使用本手册所示的基准及测试连接,请选择
 1个跳接法。
- 有关设置的详细说明,请参见第15页上的表2。

- 续 -

以远端信号源模式进行自动测试:设置基准 (续)

3 在 850 nm (DTX-MFM2/GFM2)或 1310 nm (DTX-SFM2)波长条件下,按住智能远端光纤模块上的 按钮 3 秒钟来启动输出端口。再按一次可切换至 1300 nm (DTX-MFM2)、1310 nm (DTX-GFM2)或 1550 nm (DTX-SFM2)。

对较短的波长 LED 指示灯亮红灯,较长的波长则亮绿灯。

对于其它信号源,确认输出信号源已设置为正确的波长及 持续信号波模式。

- 4 将旋转开关转至 SPECIAL FUNCTIONS;然后选择设置基准。如果同时连接了光纤模块和双绞线适配器或同轴电缆适配器,接下来选择光纤模块。
- 5 设置基准屏幕画面显示用于所选的测试方法的连接。图 16 显示用于"1个跳接法"的连接。清洁并检查测试仪、测 试基准线及信号源上的连接器,连接测试仪及信号源,然 后按 🐨 键。

图 16. 以远端信号源模式设置基准(1个跳接法)

多模测试基准线:

850 nm: 小于或等于 0.11 dB 1300 nm: 小于或等于 0.10 dB

(由于光纤在 850 nm 比在 1300 nm 时损耗更多,所以极 限值不同。)

单模测试基准线:

对于 1310 nm 和 1550 nm 为小于或等于 0.20 dB

- 10 如果结果大于上述的极限值,请使用附录 A 中给定的步骤 来测试连接线。当您拥有良好的测试基准线时,请在测试 光纤链路之前设置基准并再次进行这些步骤 (第5步到 第9步)。
- **11** 保存测试结果以便显示您使用了良好的测试基准线来测试 链路。

注意

Fluke Networks 建议您在测试各个光纤链路之前使用 此步骤来确保您的测试基准线性能良好。

图 17. 以远端信号源模式测试测试基准线

图 18. 以远端信号源模式测试链路 (1个跳接法)

使用视频故障定位器

光纤模块包含一个视频故障定位器,帮助您快速检查光纤连 通性、描记光纤曲线图、并找到光纤及连接器沿线上的故障 问题。

视频故障定位器端口可接受带 2.5 毫米套圈 (SC、 ST、或 FC)的连接器。若要连接其它尺寸的套圈,于布线一端使用 有适当连接器的跳接线,于测试仪端使用 SC、 ST、或 FC 连 接器。

图 19 显示使用视频故障定位器所需的装置。

图 19. 使用视频故障定位器所需的装置

使	使用视频故障定位器				
1	清洁测试基准线 (如果使用)及待测光纤上的连接器。	4	查看红色指示灯,找到光纤或故障 (如图 20 所示):		
2	将光纤直接连接至测试仪的 VFL 端口或使用测试基准线 连接。 通过按靠近 VFL 连接器的按钮,开启视频故障定位器, 如图 20 所示。再按一下则切换至闪烁模式。再按一下 即可开启定位器。		 若要检查连通性或描记光纤连接,查看光纤端点的红色指示灯。可将一张白纸或卡片放在发出光的光纤连接器前间接观看 VFL 的光线。 若要找到故障,从一端沿着光纤移动,查看穿透光纤包 覆层或连接器护套的红色闪光。 		
3					
			<i>若光纤包覆层为深色,可能无法看透其内的定位器指示</i> <i>灯。</i>		

图 20. 使用视频故障定位器

监控光学功率

功率计可用于监控如光学网络接口卡或光学测试装置等信号 源所产生的光学功率。

测试仪提供两种不同的功率计功能:

- 单次测试(SINGLE TEST)模式:在850 nm 和1300 nm (DTX-MFM2)、850 nm 和1310 nm(DTX-GFM2)或 1310 nm 和1550 nm(DTX-SFM2)波长条件下分别进 行一次功率测量。您可以保存该模式下的功率测量值。
- 监控(MONITOR)模式:您可连续监控 850 纳米、 1300 纳米、1310 纳米、或 1550 纳米波长下的功率。但 不能保存测量值。

图 21 显示以监控模式监控功率所需的装置。

图 21. 监控光学功率所需的装置

监控光学功率				
1	清洁测试仪的输入端口以及测试基准线和信号源连接器。	4	选择 Power Meter (功率计) 。无需选择光纤类型或测 试极限值,	
2	用测试基准线将信号源连接至测试仪的输入端口,如图 22 所示。打开信号源。		风极快世。	
		5	选择正确的波长,然后按 📧 键。	
3	将旋转开关转至 Monitor,然后选择 功率计 。如果媒介类 型未设为 Fiber Loss (光纤损耗) ,按 🗊 🔿 Change Media (更改媒介) 来更改它。		若要在开始测试之后更改波长,按 🗊)更改 λ 键。	

图 22. 监控光学功率连接

选件及零配件

有关选件及零配件的完整列表,请访问 Fluke Networks 网站:www.flukenetworks.com/cn。

若要订购选件或零配件,请依第 2 页的说明与 Fluke Networks 联系。

维护保养

遵循 DTX *系列* CableAnalyzer 用户手册所述的维护程序来保 养与维护本装置。

依照第10页所述的方法来清洁可选的连接器。

更换光纤测试基准线

选择满足下面要求的光纤测试基准线用于进行更换:

- 满足 ISO/IEC 14763-3 的要求
- 线芯及外壳尺寸:符合待测光纤的尺寸
- 连接器抛光: PC 或 UPC, APC 仅用于在带有 APC 连接器 的布线上进行的测试
- 测试基准线长度:最长5m

为了确保测试仪的最优化性能,请向 Fluke Networks 购买更 换测试基准线。

将远端测试仪用于 OptiFiber™ 认证 OTDR

您可将安装 DTX-MFM2 或 DTX-SFM2 光纤模块的 DTX 系列 智能远端用作 Fluke Networks OptiFiber 光纤认证 (OTDR)分析仪的远端。DTX 远端测试仪可用作第二 OptiFiber 测试仪的作用,用于以"智能远端"模式中的 OptiFiber 损耗 / 长度选项来测量损耗及长度。您可单独购买 远端测试仪作为此用途。请参见 Fluke Networks 网站或与 Fluke Networks 联系以查询细节。

认证、符合标准及规范信息

C N10140

符合澳洲相关标准。

CE

符合欧盟相关法令。

由加拿大标准协会 (Canadian Standards Association)登录

激光安全 输出端口:第1类 VFL端口:第2类 符合 ENG0975 1 和

符合 EN60825-1 和 EN61010-1 (CE) 以及 CFR21 要求

为何必须进行此测试

为获得有关损耗的精确测量值,必须使用高品质的测试基准 线,它不仅情况良好而且符合 ISO/IEC 14763-3 的要求。光功 率损耗的测量值很大程度上受到光纤连接器端面情况的影 响。污垢和受损的端面是导致光纤链路问题最常见的原因。

何时必须进行此测试

在这些时候测试您的测试基准线:

- 当每天开始工作时
- 当将设备移至不同区域时
- 当您更换设备来测试带有不同类型连接器的链路时

进行完本附录给定的测试后,使用与布线认证步骤一起给定的步骤来监测连接线的情况。

附录 A: 如何测试测试基准线

您必须拥有的设备

图 A-1 显示测试您的测试基准线所必须拥有的设备。

\Lambda 小心

要进行此步骤,您必须拥有一台光纤显微镜。除非 您可以检查连接器上的端面,否则不能确定您的连 接线是否良好。污垢或受损的端面可以生成良好的 损耗测量值,但是随后便会导致问题的出现。参见 图 A-2。

图 A-1. 用于测试测试基准线的装置

1. 设置测试仪

- 1-1 开启测试仪。至少等上 5 分钟以便测试仪变稳定。如果测 试仪比工作区域的温度要高或要低很多,那么多等一会 儿。
- 1-2 将旋转开关转至 SETUP, 然后进行这些设置:
 - 测试极限:选择适用的极限值:

标准	多模测试极限	单模测试极限		
ANSI/TIA-568-C	TIA-568-C 多模	TIA-568-C 单模 ISP		
ISO/IEC 14763-3	ISO/IEC 14763-3	ISO/IEC 14763-3		

- 光纤类型:选择待测缆线的类型。这样便设置了折射率(n)。上述的测试极限值用n来计算光纤长度,然后用长度为损耗计算极限值。所以,必须使用正确的n值来得到准确的损耗测量值。如果您找不到符合的光纤类型,可以在设置菜单的第3个选项卡上为您的光纤输入n值。从缆线供应商处获得n值。
- 远端端点设置:环回
- 双向:是
- 适配器数目:1
- 连接器类型:选择待测连接线上的连接器类型。
- 测试方法:1个跳接

2. 清洁并检视连接器

- 2-2 清洁端面之后,用光纤显微镜检查该端面。图 A-2 的范例 显示通过光纤显微镜您所能看到的情况。
- 2-1 测试基准线必须拥有干净且毫无损坏的端面。始终使用 正确的步骤来清洁端面。参见第 10 页或使用与清洁用品 一起给定的步骤。

图 A-2. 光纤端面的范例

3. 设置基准

- 3-1 如图 A-3 所示进行连接。
- 3-2 将旋转开关转至 SPECIAL FUNCTIONS,然后选择设置基 **准**。如果同时连接了一个光纤模块和一个双绞线或同轴 电缆适配器,那么接着选择**光纤模块**。
- 3-3 确认基准值良好:
 - 对于 50/125 µm 光纤,基准值必须优于 -24.50 dBm (例如, -23.50 dBm 是一个更优良的值)
 - 对于 62.5/125 µm 光纤,基准值必须优于 -20.00 dBm (例如,-19.50 dBm 是一个更优良的值)
 - 对于 9/125 µm 光纤,基准值必须优于 -8.00 dBm (例 如, -7.50 dBm 是一个更优良的值)

如果基准值欠佳,则用一根不同的测试基准线再次进行 基准设置的步骤。

图 A-3. 基准连接

4. 双向测试基准线

- 4-1 从测试仪的 INPUT 端口断开测试基准线 (图 A-4, ①)。
- 4-2 连接您想测试的连接线 (图 A-4, 2)。
- **4-3** 将旋转开关转至 AUTOTEST,然后按 ☞ 键。本测试测量 连接器A的损耗,如图 A-4 所示。
- 4-4 测试的第一部分完成后,反向连接连接线(图 A-4,
 ③)。
- **4-5** 按 ᠌ 键 OK。本测试测量连接器 B 的损耗,如图 A-4 所示。

5. 读取损耗测量值

将每个方向的损耗测量值与这些极限值进行比较:

- 多模测试基准线:小于或等于 0.10 dB
- 单模测试基准线:小于或等于 0.20 dB

如果连接器没有污垢或损坏,但是损耗高于这些极限值,那 么该连接线不符合 ISO/IEC 14763-3 的要求。请勿使用该连接 线作为测试基准线。

图 A-4. 用于测试测试基准线的连接

附录 B:测试方法参考对照表

工业标准对于相等的测试方法使用不同的名称。表 B-1 显示 本手册及四大通用工业标准所用的三种光纤测试方法的名称。

损耗结果包含的 链路端点连接	本用户 手册	TIA/EIA-526-14A (多模)	TIA/EIA-526-7 (单模)	IEC 61280-4-1 (多模)	IEC 61280-4-2 (单模)
1 个连接	2 个跳接	方法 A	方法 A.2	方法 1	方法 A.2
2 个连接	1 个跳接	方法 B	方法 A.1	方法 2	方法 A.1
无	3 个跳接	方法 C	方法 A.3	方法 3	方法 A.3

Table B-1. 测试方法名称

附录 C:修改的 1 个跳接法

本附录描述了修改后的,能产生"1个跳接"测试结果的基准 连接和测试连接。如果需要"1个跳接"测试结果,但没有与 被测光纤中所用连接器相匹配的连接适配器时,可使用这些 连接。该方法可让您在设置基准后,不断开光纤模块的输出 连接就可连接光纤。 图 C-1 和 C-2 显示使用 MT-RJ 连接器的光纤的基准连接和测 试连接。

如要测试两端连接器类型不同的链路,请访问 Fluke Networks" 知识库 " 获取建议。

图 C-1. 修改的 1 个跳接法:智能远端模式基准连接

图 C-2. 修改的 1 个跳接法:智能远端模式测试连接